Topic-based sentiment analysis for the social web: The role of mood and issue-related words

نویسندگان

  • Mike Thelwall
  • Kevan Buckley
چکیده

Mike Thelwall, Kevan Buckley Statistical Cybermetrics Research Group, School of Technology, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK. E-mail: [email protected], [email protected] Tel: +44 1902 321470 Fax: +44 1902 321478 General sentiment analysis for the social web has become increasingly useful to shed light on the role of emotion in online communication and offline events in both academic research and data journalism. Nevertheless, existing general purpose social web sentiment analysis algorithms may not be optimal for texts focussed around specific topics. This article introduces two new methods, mood setting and lexicon extension, to improve the accuracy of topic-specific lexical sentiment strength detection for the social web. Mood setting allows the topic mood to determine the default polarity for ostensibly neutral expressive text. Topic-specific lexicon extension involves adding topic-specific words to the default general sentiment lexicon. Experiments with eight data sets show that both methods can improve sentiment analysis performance in corpora and are recommended when the topic focus is tightest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Analysis of Social Networking Data Using Categorized Dictionary

Sentiment analysis is the process of analyzing a person’s perception or belief about a particular subject matter. However, finding correct opinion or interest from multi-facet sentiment data is a tedious task. In this paper, a method to improve the sentiment accuracy by utilizing the concept of categorized dictionary for sentiment classification and analysis is proposed.  A categorized dictiona...

متن کامل

MHSubLex: Using Metaheuristic Methods for Subjectivity Classification of Microblogs

In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into ...

متن کامل

A Sentiment-Aware Approach to Community Formation in Social Media

Participating in a community exemplifies the aspect of sharing, networking and interacting in a social media system. There has been extensive work on characterising on-line communities by their contents and tags using topic modelling tools. However, the role of sentiment and mood has not been studied. Arguably, mood is an integral feature of a text, and becomes more significant in the context o...

متن کامل

2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework

Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...

متن کامل

A Supervised Method for Constructing Sentiment Lexicon in Persian Language

Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JASIST

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013